Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38370829

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease and high fatality in poultry1. They emerge exclusively from H5 and H7 low pathogenic avian influenza viruses (LPAIVs)2. Although insertion of a furin-cleavable multibasic cleavage site (MBCS) in the hemagglutinin gene was identified decades ago as the genetic basis for LPAIV-to-HPAIV transition3,4, the exact mechanisms underlying said insertion have remained unknown. Here we used an innovative combination of bioinformatic models to predict RNA structures forming around the influenza virus RNA polymerase during replication, and circular sequencing5 to reliably detect nucleotide insertions. We show that transient H5 hemagglutinin RNA structures predicted to trap the polymerase on purine-rich sequences drive nucleotide insertions characteristic of MBCSs, providing the first strong empirical evidence of RNA structure involvement in MBCS acquisition. Insertion frequencies at the H5 cleavage site were strongly affected by substitutions in flanking genomic regions altering predicted transient RNA structures. Introduction of H5-like cleavage site sequences and structures into an H6 hemagglutinin resulted in MBCS-yielding insertions never observed before in H6 viruses. Our results demonstrate that nucleotide insertions that underlie H5 HPAIV emergence result from a previously unknown RNA-structure-driven diversity-generating mechanism, which could be shared with other RNA viruses.

2.
PLoS Pathog ; 20(2): e1011942, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38408092

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.


Subject(s)
Influenza A Virus, H7N7 Subtype , Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , Humans , Chickens , Ducks , Influenza A virus/genetics , Animals, Wild , Poultry
3.
mBio ; 14(5): e0048823, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37565755

ABSTRACT

IMPORTANCE: A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza A Virus, H7N9 Subtype/genetics , Hemagglutinins , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antigenic Variation , Disease Outbreaks , Poultry , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control
4.
J Gen Virol ; 104(8)2023 08.
Article in English | MEDLINE | ID: mdl-37650875

ABSTRACT

Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.


Subject(s)
Influenza A Virus, H2N2 Subtype , Influenza A virus , Animals , Humans , Influenza A Virus, H2N2 Subtype/genetics , Ferrets , Pandemics
5.
mSphere ; 8(4): e0020023, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37428085

ABSTRACT

Continued circulation of A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage in poultry has resulted in the diversification in multiple genetic and antigenic clades. Since 2009, clade 2.3.4.4 hemagglutinin (HA) containing viruses harboring the internal and neuraminidase (NA) genes of other avian influenza A viruses have been detected. As a result, various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8 have been identified. As of January 2023, 83 humans have been infected with A/H5N6 viruses, thereby posing an apparent risk for public health. Here, as part of a risk assessment, the in vitro and in vivo characterization of A/H5N6 A/black-headed gull/Netherlands/29/2017 is described. This A/H5N6 virus was not transmitted between ferrets via the air but was of unexpectedly high pathogenicity compared to other described A/H5N6 viruses. The virus replicated and caused severe lesions not only in respiratory tissues but also in multiple extra-respiratory tissues, including brain, liver, pancreas, spleen, lymph nodes, and adrenal gland. Sequence analyses demonstrated that the well-known mammalian adaptation substitution D701N was positively selected in almost all ferrets. In the in vitro experiments, no other known viral phenotypic properties associated with mammalian adaptation or increased pathogenicity were identified. The lack of transmission via the air and the absence of mammalian adaptation markers suggest that the public health risk of this virus is low. The high pathogenicity of this virus in ferrets could not be explained by the known mammalian pathogenicity factors and should be further studied. IMPORTANCE Avian influenza A/H5 viruses can cross the species barrier and infect humans. These infections can have a fatal outcome, but fortunately these influenza A/H5 viruses do not spread between humans. However, the extensive circulation and reassortment of A/H5N6 viruses in poultry and wild birds warrant risk assessments of circulating strains. Here an in-depth characterization of the properties of an avian A/H5N6 influenza virus isolated from a black-headed gull in the Netherlands was performed in vitro and in vivo, in ferrets. The virus was not transmissible via the air but caused severe disease and spread to extra-respiratory organs. Apart from the detection in ferrets of a mutation that increased virus replication, no other mammalian adaptation phenotypes were identified. Our results suggest that the risk of this avian A/H5N6 virus for public health is low. The underlying reasons for the high pathogenicity of this virus are unexplained and should be further studied.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A virus , Influenza in Birds , Humans , Animals , Ferrets , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N2 Subtype/genetics , Influenza A virus/genetics , Poultry
6.
Microbiol Spectr ; : e0460222, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916982

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) typically emerge from low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes upon spillover from wild aquatic birds into poultry. The conversion from LPAIV to HPAIV is characterized by the acquisition of a multibasic cleavage site (MBCS) at the proteolytic cleavage site in the viral binding and fusion protein, hemagglutinin (HA), resulting in cleavage and activation of HA by ubiquitously expressed furin-like proteases. The ensuing HPAIVs disseminate systemically in gallinaceous poultry, are endotheliotropic, and cause hemorrhagic disease with high mortality. HPAIV infections in wild aquatic birds are generally milder, often asymptomatic, and generally not associated with systemic dissemination nor endotheliotropic. As MBCS cleavage by host proteases is the main virulence determinant of HPAIVs in poultry, we set out to determine whether cleavage of HPAIV HA by host proteases might influence the observed species-specific pathogenesis and tropism. Here, we sequenced, cloned, and characterized the expression and functionality of duck furin. The furin sequence was strongly conserved between chickens and ducks, and duck furin cleaved HPAIV and tetrabasic HA in an overexpression system, confirming its functionality. Furin was expressed ubiquitously and to similar extents in duck and chicken tissues, including in primary duck endothelial cells, which sustained multicycle replication of H5N1 HPAIV but not LPAIVs. In conclusion, differences in furin-like protease biology between wild aquatic birds and gallinaceous poultry are unlikely to largely determine the stark differences observed in species-specific pathogenesis of HPAIVs. IMPORTANCE HPAIV outbreaks are a global concern due to the health risks for poultry, wildlife, and humans and their major economic impact. The number of LPAIV-to-HPAIV conversions, which is associated with spillover from wild birds to poultry, has been increasing over recent decades. Furthermore, H5 HPAIVs from the A/goose/Guangdong/1/96 lineage have been circulating in migratory birds, causing increasingly frequent epizootics in poultry and wild birds. Milder symptoms in migratory birds allow for dispersion of HPAIVs over long distances, justifying the importance of understanding the pathogenesis of HPAIVs in wild birds. Here, we examined whether host proteases are a likely candidate to explain some differences in the degree of HPAIV systemic dissemination between avian species. This is the first report to show that furin function and expression is comparable between chickens and ducks, which renders the hypothesis unlikely that furin-like protease differences influence the HPAIV species-specific pathogenesis and tropism.

7.
Nat Med ; 29(1): 270-278, 2023 01.
Article in English | MEDLINE | ID: mdl-36257333

ABSTRACT

In July 2022, the ongoing monkeypox (MPX) outbreak was declared a public health emergency of international concern. Modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as Imvamune, JYNNEOS or Imvanex) is a third-generation smallpox vaccine that is authorized and in use as a vaccine against MPX. To date, there are no data showing MPX virus (MPXV)-neutralizing antibodies in vaccinated individuals nor vaccine efficacy against MPX. Here we show that MPXV-neutralizing antibodies can be detected after MPXV infection and after historic smallpox vaccination. However, a two-shot MVA-BN immunization series in non-primed individuals yields relatively low levels of MPXV-neutralizing antibodies. Dose-sparing of an MVA-based influenza vaccine leads to lower MPXV-neutralizing antibody levels, whereas a third vaccination with the same MVA-based vaccine significantly boosts the antibody response. As the role of MPXV-neutralizing antibodies as a correlate of protection against disease and transmissibility is currently unclear, we conclude that cohort studies following vaccinated individuals are necessary to assess vaccine efficacy in at-risk populations.


Subject(s)
Influenza Vaccines , Mpox (monkeypox) , Humans , Antibodies, Neutralizing , Monkeypox virus , Antibodies, Viral , Vaccinia virus , Vaccination
8.
Proc Natl Acad Sci U S A ; 119(42): e2211616119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215486

ABSTRACT

Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.


Subject(s)
Influenza, Human , Animals , Antigenic Variation/genetics , Binding Sites , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza B virus/genetics , Mammals , Phylogeny
9.
J Virol ; 96(6): e0195921, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107371

ABSTRACT

Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.


Subject(s)
Influenza A virus , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Ferrets , Hemagglutinins/immunology , Influenza A Virus, H3N2 Subtype , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/standards , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Seasons , Vaccines, Inactivated/immunology
10.
Viruses ; 14(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-35062369

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.


Subject(s)
Endothelial Cells/immunology , Endothelial Cells/virology , Immunity, Innate , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Viral Tropism , Virus Replication/immunology , Animals , Chickens/virology , Cytokines , Ducks/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Virus Replication/physiology
11.
Nat Commun ; 12(1): 5449, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521834

ABSTRACT

During circulation in humans and natural selection to escape antibody recognition for decades, A/H3N2 influenza viruses emerged with altered receptor specificities. These viruses lost the ability to agglutinate erythrocytes critical for antigenic characterization and give low yields and acquire adaptive mutations when cultured in eggs and cells, contributing to recent vaccine challenges. Examination of receptor specificities of A/H3N2 viruses reveals that recent viruses compensated for decreased binding of the prototypic human receptor by recognizing α2,6-sialosides on extended LacNAc moieties. Erythrocyte glycomics shows an absence of extended glycans providing a rationale for lack of agglutination by recent A/H3N2 viruses. A glycan remodeling approach installing functional receptors on erythrocytes, allows antigenic characterization of recent A/H3N2 viruses confirming the cocirculation of antigenically different viruses in humans. Computational analysis of HAs in complex with sialosides having extended LacNAc moieties reveals that mutations distal to the RBD reoriented the Y159 side chain resulting in an extended receptor binding site.


Subject(s)
Erythrocytes/virology , Glycosides/chemistry , Hemagglutinins, Viral/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Polysaccharides/chemistry , Receptors, Virus/chemistry , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/metabolism , Binding Sites , Carbohydrate Sequence , Erythrocytes/metabolism , Glycomics/methods , Glycosides/metabolism , Hemagglutination Inhibition Tests , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/virology , Microarray Analysis/methods , Polysaccharides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/genetics , Receptors, Virus/metabolism , Sialic Acids/chemistry , Sialic Acids/metabolism
12.
Antimicrob Resist Infect Control ; 10(1): 100, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193302

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in young children. The predominant transmission routes for RSV are still a matter of debate. Specifically, it remains unclear if RSV can be transmitted through the air and what the correlation is between the amount of RSV in nasopharynx samples and in the air. METHODS: The amount of RSV in the air around hospitalized RSV infected infants in single-patient rooms was quantified using a six-stage Andersen cascade impactor that collects and fractionates aerosols and droplets according to size. RSV shedding in the nasopharynx of patients was followed longitudinally by quantifying RSV RNA levels and infectious virus in nasopharyngeal aspirates. Nose and throat swabs of parents and swabs of the patient's bedrail and a datalogger were also collected. RESULTS: Patients remained RSV positive during the air sampling period and infectious virus was isolated up to 9 days post onset of symptoms. In three out of six patients, low levels of RSV RNA, but no infectious virus, were recovered from impactor collection plates that capture large droplets > 7 µm. For four of these patients, one or both parents were also positive for RSV. All surface swabs were RSV-negative. CONCLUSIONS: Despite the prolonged detection of infectious RSV in the nasopharynx of patients, only small amounts of RSV RNA were collected from the air around three out of six patients, which were primarily contained in large droplets which do not remain suspended in the air for long periods of time.


Subject(s)
RNA, Viral/isolation & purification , Respiratory Aerosols and Droplets/virology , Respiratory Syncytial Virus, Human/isolation & purification , Air Microbiology , Female , Hospitalization , Humans , Infant , Infant, Newborn , Male , Nasopharynx , Netherlands , Parents , Patients' Rooms , Respiratory Syncytial Virus Infections , Virus Shedding
13.
Indoor Air ; 31(6): 1874-1885, 2021 11.
Article in English | MEDLINE | ID: mdl-34124803

ABSTRACT

Viral respiratory tract infections are a leading cause of morbidity and mortality worldwide. Unfortunately, the transmission routes and shedding kinetics of respiratory viruses remain poorly understood. Air sampling techniques to quantify infectious viruses in the air are indispensable to improve intervention strategies to control and prevent spreading of respiratory viruses. Here, the collection of infectious virus with the six-stage Andersen cascade impactor was optimized with semi-solid gelatin as collection surface. Subsequently, the collection efficiency of the cascade impactor, the SKC BioSampler, and an in-house developed electrostatic precipitator was compared. In an in vitro set-up, influenza A virus, human metapneumovirus, parainfluenza virus type 3, and respiratory syncytial virus were nebulized and the amount of collected infectious virus and viral RNA was quantified with each air sampler. Whereas only low amounts of virus were collected using the electrostatic precipitator, high amounts were collected with the BioSampler and cascade impactor. The BioSampler allowed straight-forward sampling in liquid medium, whereas the more laborious cascade impactor allowed size fractionation of virus-containing particles. Depending on the research question, either the BioSampler or the cascade impactor can be applied in laboratory and field settings, such as hospitals to gain more insight into the transmission routes of respiratory viruses.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Aerosols , Influenza A virus/isolation & purification , Metapneumovirus/isolation & purification , Parainfluenza Virus 3, Human/isolation & purification , Respiratory Syncytial Viruses/isolation & purification
14.
Virus Res ; 302: 198490, 2021 09.
Article in English | MEDLINE | ID: mdl-34146613

ABSTRACT

Human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a causative agent of respiratory illness in young children, the elderly, and immunocompromised individuals. Globally, viruses belonging to two main genetic lineages circulate, A and B, which are further divided into four genetic sublineages (A1, A2, B1, B2). Classical genotyping of HMPV is based on the sequence of the fusion (F) and attachment (G) glycoprotein genes, which are under direct antibody-mediated immune pressure. Whole genome sequencing provides more information than sequencing of subgenomic fragments and is therefore a powerful tool for studying virus evolution and disease epidemiology and for identifying transmission events and nosocomial outbreaks. Here, we report a robust method to obtain whole genome sequences for HMPV using MinION Nanopore technology. This assay is able to generate HMPV whole genome sequences from clinical specimens with good coverage of the highly variable G gene and is equally sensitive for strains of all four genetic HMPV sublineages. This method can be used for studying HMPV genetics, epidemiology, and evolutionary dynamics.


Subject(s)
Metapneumovirus , Nanopores , Paramyxoviridae Infections , Respiratory Tract Infections , Aged , Child , Child, Preschool , Genetic Variation , Humans , Infant , Metapneumovirus/genetics , Phylogeny , Technology , Whole Genome Sequencing
15.
Nat Commun ; 12(1): 1653, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712573

ABSTRACT

SARS-CoV-2 emerged in late 2019 and caused a pandemic, whereas the closely related SARS-CoV was contained rapidly in 2003. Here, an experimental set-up is used to study transmission of SARS-CoV and SARS-CoV-2 through the air between ferrets over more than a meter distance. Both viruses cause a robust productive respiratory tract infection resulting in transmission of SARS-CoV-2 to two of four indirect recipient ferrets and SARS-CoV to all four. A control pandemic A/H1N1 influenza virus also transmits efficiently. Serological assays confirm all virus transmission events. Although the experiments do not discriminate between transmission via small aerosols, large droplets and fomites, these results demonstrate that SARS-CoV and SARS-CoV-2 can remain infectious while traveling through the air. Efficient virus transmission between ferrets is in agreement with frequent SARS-CoV-2 outbreaks in mink farms. Although the evidence for virus transmission via the air between humans under natural conditions is absent or weak for SARS-CoV and SARS-CoV-2, ferrets may represent a sensitive model to study interventions aimed at preventing virus transmission.


Subject(s)
Air Microbiology , COVID-19/transmission , Ferrets/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe acute respiratory syndrome-related coronavirus , Aerosols , Amino Acid Substitution , Animal Fur/virology , Animals , COVID-19/virology , Disease Models, Animal , Female , Fomites/virology , Influenza A Virus, H1N1 Subtype , Models, Biological , Orthomyxoviridae Infections/transmission , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/virology , Time Factors , Viral Load , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Shedding
16.
Euro Surveill ; 26(9)2021 Mar.
Article in English | MEDLINE | ID: mdl-33663647

ABSTRACT

BackgroundWhole genome sequencing (WGS) is increasingly used for pathogen identification and surveillance.AimWe evaluated costs and benefits of routine WGS through case studies at eight reference laboratories in Europe and the Americas which conduct pathogen surveillance for avian influenza (two laboratories), human influenza (one laboratory) and food-borne pathogens (five laboratories).MethodsThe evaluation focused on the institutional perspective, i.e. the 'investment case' for implementing WGS compared with conventional methods, based on costs and benefits during a defined reference period, mostly covering at least part of 2017. A break-even analysis estimated the number of cases of illness (for the example of Salmonella surveillance) that would need to be avoided through WGS in order to 'break even' on costs.ResultsOn a per-sample basis, WGS was between 1.2 and 4.3 times more expensive than routine conventional methods. However, WGS brought major benefits for pathogen identification and surveillance, substantially changing laboratory workflows, analytical processes and outbreaks detection and control. Between 0.2% and 1.1% (on average 0.7%) of reported salmonellosis cases would need to be prevented to break even with respect to the additional costs of WGS.ConclusionsEven at cost levels documented here, WGS provides a level of additional information that more than balances the additional costs if used effectively. The substantial cost differences for WGS between reference laboratories were due to economies of scale, degree of automation, sequencing technology used and institutional discounts for equipment and consumables, as well as the extent to which sequencers are used at full capacity.


Subject(s)
Salmonella Food Poisoning , Americas , Animals , Cost-Benefit Analysis , Europe/epidemiology , Genome, Bacterial , Humans , Whole Genome Sequencing
17.
Cell Host Microbe ; 28(4): 602-613.e7, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33031770

ABSTRACT

In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/transmission , Aerosols , Animals , Binding Sites , Birds/virology , Ferrets/virology , Humans , Influenza A Virus, H10N7 Subtype , Influenza A virus/metabolism , Influenza in Birds/virology , Mammals , Membrane Fusion , Models, Molecular , Orthomyxoviridae Infections/virology , Polysaccharides , Sialic Acids/metabolism
18.
Nat Commun ; 11(1): 3496, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641684

ABSTRACT

SARS-CoV-2, a coronavirus that emerged in late 2019, has spread rapidly worldwide, and information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets, 1 to 3 days and 3 to 7 days after exposure respectively. The pattern of virus shedding in the direct contact and indirect recipient ferrets is similar to that of the inoculated ferrets and infectious virus is isolated from all positive animals, showing that ferrets are productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Animals , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Disease Models, Animal , Ferrets , Genome, Viral/genetics , Humans , Pandemics , Rectum/virology , Respiratory System/virology , SARS-CoV-2 , Sequence Analysis, RNA , Virus Shedding
19.
Nat Commun ; 11(1): 766, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034144

ABSTRACT

Human influenza A viruses are known to be transmitted via the air from person to person. It is unknown from which anatomical site of the respiratory tract influenza A virus transmission occurs. Here, pairs of genetically tagged and untagged influenza A/H1N1, A/H3N2 and A/H5N1 viruses that are transmissible via the air are used to co-infect donor ferrets via the intranasal and intratracheal routes to cause an upper and lower respiratory tract infection, respectively. In all transmission cases, we observe that the viruses in the recipient ferrets are of the same genotype as the viruses inoculated intranasally, demonstrating that they are expelled from the upper respiratory tract of ferrets rather than from trachea or the lower airways. Moreover, influenza A viruses that are transmissible via the air preferentially infect ferret and human nasal respiratory epithelium. These results indicate that virus replication in the upper respiratory tract, the nasal respiratory epithelium in particular, of donors is a driver for transmission of influenza A viruses via the air.


Subject(s)
Ferrets/virology , Influenza A virus/physiology , Nasal Mucosa/virology , Orthomyxoviridae Infections/transmission , Air , Animals , Dogs , Female , Humans , Influenza A virus/genetics , Influenza A virus/pathogenicity , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/veterinary , Viral Tropism
20.
PLoS One ; 15(2): e0229326, 2020.
Article in English | MEDLINE | ID: mdl-32078666

ABSTRACT

As high-throughput sequencing technologies are becoming more widely adopted for analysing pathogens in disease outbreaks there needs to be assurance that the different sequencing technologies and approaches to data analysis will yield reliable and comparable results. Conversely, understanding where agreement cannot be achieved provides insight into the limitations of these approaches and also allows efforts to be focused on areas of the process that need improvement. This manuscript describes the next-generation sequencing of three closely related viruses, each analysed using different sequencing strategies, sequencing instruments and data processing pipelines. In order to determine the comparability of consensus sequences and minority (sub-consensus) single nucleotide variant (mSNV) identification, the biological samples, the sequence data from 3 sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in the final result could be attributed to all stages in the process, but the most critical were the well-known homopolymer errors introduced by 454 sequencing, and the alignment processes in the different data processing pipelines which affected the consistency of mSNV detection. However, homopolymer errors aside, there was generally a good agreement between consensus sequences that were obtained for all combinations of sequencing platforms and data processing pipelines. Nevertheless, minority variant analysis will need a different level of careful standardization and awareness about the possible limitations, as shown in this study.


Subject(s)
Disease Outbreaks/veterinary , Ducks/virology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/methods , Animals , Genome, Viral , Orthomyxoviridae Infections/virology , RNA, Viral/analysis , RNA, Viral/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...